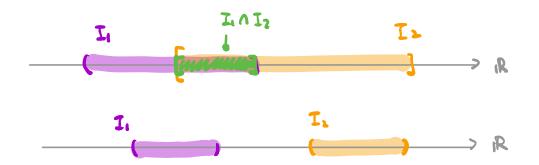
[Problem Set 3 posted, due on Feb 5.]

Last time interval, characterization by "connectedness"

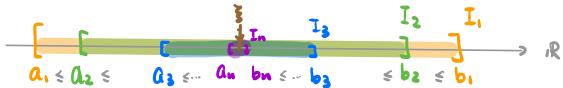
Note: $I_1, I_2 \subseteq iR$ intervals \Rightarrow $I_1 \cap I_2$ is always an interval. But $I_1 \cup I_2$ might NOT be.



Q: What about OI: ?

Thm: ("Nested Interval Property" NIP) Let In := [an.bn], n e iN, be a seq. of closed and bounded intervals which are "nested":

 $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots \supseteq I_{n} \supseteq I_{n+1} \supseteq \cdots \cdots$ Then, $\bigcap_{n=1}^{\infty} I_{n} \neq \phi$. Moreover, if inf { Length (In) | n \in N} = 0, then $\bigcap_{n=1}^{\infty} I_{n}$ { }. <u>Picture:</u>



Examples:
$$\bigcap_{n=1}^{\infty} [0, \frac{1}{n}] = \{0\}$$

 $\bigcap_{n=1}^{\infty} [0, 1+\frac{1}{n}] = [0, 4] \neq \phi$.
Non-examples:
(1) $\bigcap_{n=1}^{\infty} [0, \frac{1}{n}] = \phi$ not closed!
(2) $\bigcap_{n=1}^{\infty} [n, \infty) = \phi$ not bdd?
(3) $\bigcap_{n=1}^{\infty} [n, n+1] = \phi$ not nested!
Proof of Thm:
Recall: $T_n = [a_n, b_n]$, where $a_n \leq b_n \forall n \in \mathbb{N}$.
Nested $\Rightarrow a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq b_n \leq b_{n-1} \leq \cdots \leq b_2 - b_1 \forall n \in \mathbb{N}$
Can sider $\phi \neq S := \{a_n : n \in \mathbb{N}\} \leq \mathbb{R}$.
Note that S is bdd above since $a_n \leq b_1 \forall n \in \mathbb{N}$.
By Completeness Property, $\frac{1}{2} := \sup S \in \mathbb{R}$ exists.
Claim: $\frac{1}{3} \in \bigcap_{n=1}^{\infty} I_n$ (hence $\bigcap_{n=1}^{\infty} I_n \neq \phi$).
 $\frac{Pf}{3} = \sup S$ is an upper bd. $\Rightarrow \frac{1}{3} \geq a_n \forall n \in \mathbb{N}$.

Suppose NOT, ie. $\S > b_m$ for some $m \in iN$ $\Im = \sup S \implies b_m$ is <u>NOT</u> an upper bd for S $\implies \exists k \in iN$ st $b_m < a_k$ <u>contradiction</u>! <u>Case 1</u>: $m < k \implies b_k \leq b_m < a_k \leq b_k$ <u>Case 2</u>: $m \geq k \implies b_m < a_k \leq a_m$

For the rest of the theorem, leave as exercise.

Cor: IR is uncountable.

Pf: It suffices to show [0,1] is uncountable. Argue by contradiction Suppose [0,1] is countable. Then we can list them all into a sequence:

 $[0,1] = \{ \times, \times, \times, \times, \times, \times, \times, \dots, \} \quad (*)$

Define a seq of nested, closed, bdd intervals In. nGIN as follow:

- · choose $I_1 \subseteq [0,1]$ st $X_1 \notin I_1$ · choose $I_2 \subseteq I_1$ st $X_2 \notin I_2$ $I_1 = I_2 = I$
- · choose In S In : st Xn & In By NIP, then $\bigcap_{n=1}^{\infty}$ In : \$\$ Suppose \$ C $\bigcap_{n=1}^{\infty}$ In. \$\$ \$C In UnCIN => \$\$ \$ Xn UnCIN Contradiction. \$\$ Contradiction. \$\$ Contradiction. \$\$ Contradiction. \$\$ Contradiction.